
Optimal Partitions of Data in
Higher Dimensions

Bradley W. Jackson

Department of Mathematics, San Jose State University

jackson@math.sjsu.edu

Jeffrey D. Scargle

Space Science Division, NASA Ames Research Center

Jeffrey.D.Scargle@nasa.gov

and

Chris Cusanza, David Barnes, Dennis Kanygin,
Russell Sarmiento, Sowmya Subramaniam, Tzu-Wang Chuang

San Jose State University, Center for Applied Mathematics and Computer Science

Nov. 19, 2003

ABSTRACT

Given any starting partition of a data space into N cells, we consider the
problem of finding the optimal partition of the data space into blocks which
are unions of cells. The algorithms we describe can be used to find the optimal
partition of a set of data points in any dimension. These algorithms work for any
strongly convex objective function that is additive on the blocks of a partition.
We describe an efficient O(N2) dynamic programming algorithm for finding the
optimal partition of N cells into arbitrary blocks (not necessarily connected)
and we also give a branch and bound algorithm for finding the optimal partition
of N cells into connected blocks. These results can be used to search for clusters
in astronomical data, signal processing and in a variety of other applications.

Subject headings: signal processing, galaxy clusters, data analysis, algo-

rithms, dynamic programming, branch and bound

– 2 –

1. Introduction

In time-series analysis, one often has a set of data points on a time interval to

represent the varying intensity of the signal from a source with unknown properties.

In other applications one might also have a set of data points in the plane or in 3-

dimenional space representing the overall intensity of the signal from a collection of

different sources. We also have the following problem in astronomical data analysis.

Data points in dimension 2 or 3 can be used to represent the positions of galaxies

in space. In either case, we want to partition the data points (galaxies, etc.) into

regions that are roughly uniform in density. The high-density regions might represent

galaxy clusters or other interesting objects. We start with a partition of the data into

cells and consider subpartitions of the starting partition into blocks that are unions

of cells. Our goal is to find the optimal partition of the data.

In general, suppose we are given a set of data points in a bounded region X of

<n and let C be a set of N connected cells that partition the data space X. We often

use the Voronoi diagram of a set of data points, which contains one cell for each data

point, as our starting partition. In a Voronoi diagram each point in the data space

is assigned to the cell containing the data point that it is closest to, thus the data

determines the starting partition. A block B is defined to be any union of cells from

the starting partition C.

For a given set of data points our goal is to find the best piece-wise constant

function that represents the data. Each partition of the data into blocks has a corre-

sponding piece-wise constant function, that is constant on the blocks of the partition.

To quantify what we mean by the best partition we assign a numerical value to each

partition and then try to solve the resulting combinatorial optimization problem.

Such a quantity goes by many names depending on the application: goodness of fit,

objective function, fitness, and many others. Here we simply use the generic term

”value”, and for example refer to the value of a partition or of a block (since we see

below that the value of a partition is sometimes defined using the values of its blocks).

This quantity measures how well the corresponding piece-wise constant model (con-

stant on the blocks making up the partition) fits the data. This can be implemented

by maximizing some measure of model fitness, such as the posterior probability of

the model, given the data. As described elsewhere (Scargle 1998), by marginalizing

the model parameters we get a value that depends only on the the blocks and not

on the locations of the data points. For any block, B, in P , we denote its area (or

volume or length) by a(B), the population of block B by n(B), the number of data

points in block B, and the ”average” density of block B by n(B)/a(B). Under suit-

able assumptions (Scargle 1998) we were able to assign the likelihood of a Poisson

– 3 –

distribution with constant density (equal to the average density) over a region of area

a(B) containing n(B) data points, equal to

f(a(B), n(B)) = β(a(B)− n(B) + 1, n(B) + 1) (1)

= Γ(n(B) + 1) ∗ Γ(a(B)− n(B) + 1)/Γ(a(B) + 2). (2)

This formula holds for data in any dimension (the definition of a(B) changes to the

appropriate measure of volume for the given dimension). The likelihood of a given

partition is the product of the likelihoods over all the blocks in that partition since

we assume that the probabilities on each region are independent of each other. Thus

the best (most likely) subpartition is one which maximizes

V =
∏

f(a(Bi), n(Bi)). (3)

We refer to a partition which achieves the maximum value as an optimal partition.

Note that a partition which maximizes V also maximizes

W = logV =
∑

g(a(Bi), n(Bi)), (4)

where g(a(Bi), n(Bi)) = logf(a(Bi), n(Bi)). Thus our goal is to find a partition Pmax

which maximizes W =
∑

g(a(Bi), n(Bi)) where the sum is taken over all the blocks

in the partition.

2. Finding Optimal Partitions in Dimension 1

Suppose that g is a function that assigns a value to any block and for any par-

tition P , the value of P , W (P) is equal to the sum of the values of its blocks,∑
g(a(Bi), n(Bi)). In this case we say that W satisfies the additive property. Let

Pmax be any optimal partition with respect to W , and let P0 be any subpartition

of Pmax. It follows from the additive property that P0 is an optimal partition of

the set that it covers. This is known as the principle of optimality (Bellman 1957).

Using the principle of optimality we were able to show that dynamic programming

(Jackson,Scargle,et.al. 2003) gives a highly efficient O(N2) algorithm for finding the

optimal partition of N data points on an interval. Once the optimal partitions of the

first j cells, j = 0, 1, 2, . . . , i are found, the optimal partition of the first i+1 cells can

be found by determining which of the the following i+1 partitions has the maximum

value. For j = 0, 1, 2, . . . , i consider the optimal partition of the first j blocks together

with a single block containing cells j + 1, . . . , i + 1. Using the principle of optimality

– 4 –

we see that the partition with the maximum value in this group will be the optimal

partition of the first i+1 blocks. The incremental way that this algorithm operates on

the data also allows it to operate nicely in an on-line mode (performing calculations

on the first i data points as we are waiting for the next data point to be transmitted).

This mode has been found to be very useful in the rapid detection of changepoints in

a data stream.

Dynamic programming has also been shown to be an efficient technique for find-

ing the optimal solution for a variety of other 1-dimensional data analysis problems

(Hubert 1997; Kay 1998; Kehagias,Nicolau,Fragkou,Petridis 2004; Quintana,Iglesias

2003; Vidal 1993). In most cases one seeks the optimal partition into k blocks, for

some fixed k. However, our algorithm is able to compare partitions with different

numbers of blocks, so the number of blocks is automatically determined by the data.

Relatively little has appeared about finding the optimal partition of a set of

data points in higher dimensions. Indeed, for many standard problems in higher

dimensions it is known that the problem of finding the optimal partition is NP-

complete. Unlike the situation in dimension 1, dynamic programming does not work

nearly as well in higher dimensions. One limitation on the efficiency of a dynamic

programming algorithm is that one must, at some point, compute the value of each

possible connected block. In dimensions 2 and higher, the worst-case complexity of

dynamic programming will be exponential. In these dimensions, one can have a cell

adjacent to each of the other N − 1 cells and it will be contained in 2N−1 different

connected blocks and any dynamic programming algorithm will have to compute the

value of each of these blocks.

3. A Branch and Bound Algorithm for Data in Higher Dimensions

In higher dimensions we also wanted to find an efficient algorithm for determining

the optimal partition of a given set of cells into blocks. In applications there are two

related but distinct problems: Find the optimal partition of the data space into

1. arbitrary blocks;

2. connected blocks.

In the former, the cells making up a block can lie anywhere in the data space,

whereas in the latter, they must form a connected region. We say that a block B

is connected, if and only if for any two cells c, d in B there is a sequence of cells

c = c0, c1, c2, . . . , cm = d in B such that any two consecutive cells ci, ci+1 are adjacent,

– 5 –

i = 0, 1, . . . ,m − 1. Contour maps provide an analogy. In the analog of (1) the

levels may contain any number of contours that correspond to the same value. In the

analog of (2), contour curves for the same level that do not intersect each other are

considered distinct. In principle, the two problems can be quite different. In practice,

the main difference is that in (1) regions of the data space widely separated from

each other can combine their statistical weight to make structures that in (2) would

have a smaller value, since the components of a disconnected block would be treated

as separate smaller blocks and thus given less overall weight. For most applications

it seems appropriate to consider all possible partitions of the data cells into blocks

(connected or not). We will exhibit an efficient dynamic programming algorithm for

finding the optimal partition into arbitrary blocks. This algorithm also extends to a

branch and bound algorithm that can be used to find an optimal partition of the data

into connected blocks. Because the worst-case complexity of the branch and bound

algorithm is exponential, it is difficult to find the optimal partition into connected

blocks for any large problem.

In comparing our techniques for partitioning data with some of the standard

data clustering techniques, we note that our method compares all partitions of the

data, regardless of the number of blocks. The standard techniques for clustering a

set of data points (Alpert,Kahng 1997) into k clusters, so that the maximum cluster

diameter (or the sum of the cluster diameters) is minimized, require the number of

clusters to be fixed ahead of time. For dimension 2 and higher it is known that

these standard problems are NP-complete (Garey,Johnson 1979). We will present

an efficient O(N2) algorithm for finding the optimal partition of N data points into

arbitrary blocks, that works for data in any dimension. However, we don’t yet know

if there is an efficient algorithm for finding an optimal partition of the data into

connected blocks.

Let C be any set of N connected cells that partition a data space X of <n. Let P

be any partition of X into blocks B1, B2, . . . , BM , M ≤ N , that are connected unions

of cells. Define P* to be the set of all such partitions of X. Similarly, we define

P** to be the set of partitions of X into arbitrary blocks (not necessarily connected).

Since we start with a finite number of cells then the number of partitions in P* (P**)

is also finite. According to the intermediate density property (see below) the problem

of finding an optimal partition of C into arbitrary blocks can be reduced to the 1-

dimensional problem of finding an optimal partition of the sorted cells C1, C2, . . . , CN

(in order of monotone density) into blocks assuming that cells Ci and Ci+1 are adjacent

for i = 1, 2, . . . , N−1 and the optimal solution for this problem can be found in O(N2)

time using the dynamic programming algorithm that was described above. In order

to apply a branch and bound algorithm in finding an optimal partition of P* we

– 6 –

need to be able to find ways of obtaining bounds on the value of a partition without

actually computing it. We are searching for the optimal partition in P*, the set of

partitions of the initial cells into connected blocks. To employ the branch and bound

technique we expand our search to a larger class of problems. We will search for the

optimal partition P in P**, the set of partitions of the initial set C of N cells into

arbitrary blocks, using the dynamic programming algorithm described above.

Below we list the steps of our branch and bound algorithm for finding the optimal

partition of C in P*. The set S is a set of open subproblems that starts with a single

problem, that of finding the optimal partition of C in P**. Initially bestvalue has a

value of negative infinity and as the algorithm progresses, bestvalue stores the largest

value of a partition in P* that has been discovered so far.

1. For some problem T in S, we find the optimal partition P in P**.

2. If the blocks of the optimal partition are connected, we say that P is a possible

optimal solution (POS). Even if the optimal partition P has disconnected blocks

then the value of P is an upper bound on the value of an optimal partition in

P*, since P* is contained in P**. This is the ”bounding” part of the branch

and bound algorithm. If the value of P , g(P), is less than or equal to bestvalue

then T is removed from S since it cannot lead to a POS with a higher value. If

g(P) is greater than bestvalue, we define bestvalue = g(P). Again T is removed

from S and any other subproblem whose upper bound is less than or equal to

g(P) is also removed from S. If S is empty, then bestvalue is the optimal value

of a partition in P* and the corresponding partition is an optimal partition, so

we stop. If S is nonempty, we continue by returning to step 1 to look at another

open problem in S.

3. If P has disconnected blocks we branch about a pair of adjacent cells i and j.

Usually we let i be some cell in a disconnected block and let j be an adjacent

cell outside of this block. We consider two subproblems, T1, where cells i and

j are merged (to form a single cell), and T2, where cells i and j are separated

(the adjacency between cells i and j is removed). Note that the optimal solution

of T1 will be the optimal partition in P* with i and j in the same block. In

the optimal solution of T2, cells i and j will not be merged directly. To avoid

redundancy in the branch and bound algorithm one should not consider any

future branches which involve merging a pair of cells that result in a cell that

contains both i and j since this possibility has already been considered when i

and j were merged. We remove T from S and add the two new problems T1

and T2. We continue by returning to step 1 to look at another open problem in

S. This is the ”branching” part of the branch and bound algorithm.

– 7 –

Eventually every subproblem in S will end up with an associated optimal par-

tition in P* since we can only branch on an adjacency between two cells once and

after branching on every pair of adjacent cells we end up with a partition consisting

of nonadjacent connected blocks. The corresponding optimal partition is this parti-

tion, which is in P*. Thus the branch and bound algorithm terminates when every

subproblem is closed and the best POS discovered so far up to that point is now

shown to be optimal. The worst-case complexity of this algorithm is at most O(2M),

where M is the number of adjacencies between the cells in the starting partition. In

fact, if we are careful to avoid redundancy as described in the third step above we see

that this algorithm is O(2N), where N is the number of cells in the starting partition.

Obviously if the branch and bound algorithm is implemented properly we hope that

the average complexity is much better than this worst-case complexity.

4. Intermediate Density Property

To implement the branch and bound algorithm described above efficiently, we use

something that we call the intermediate density property. The intermediate density

property allows the one-dimensional dynamic programming algorithm to be used to

find the optimal partition of the data into arbitrary blocks (not necessarily connected),

even when the data comes from a higher dimension. This property says that if Pmax

is an optimal partition of a collection of cells into arbitrary blocks, with cells c and d

in block B, and if e is a cell with density intermediate to the densities of cells c and d,

then e must also be in block B. The proof of the intermediate density property uses

the strict convexity of the function g that assigns a value (likelihood) to each of the

blocks of a partition. If cell e is not in block B as described above, then the convexity

allows us to find a better partition, contradicting the fact that Pmax is optimal.

Definition: We say that a function g(x, y) is strictly convex on a region X if and

only if for any 0 < λ < 1, and every pair of points (x1, y1), (x2, y2) in X,

λg(x1, y1) + (1− λ)g(x2, y2) ≥ g(λx1 + (1− λ)x2, λy1 + (1− λ)y2) (5)

with strict inequality holding unless x1 = x2 and y1 = y2.

Let C = C1, C2, . . . , CN be a set of cells partitioning the data space X, and let P

represent a partition of the cells into M blocks, B1, B2, . . . , BM . We usually assume

that each cell has 1 data point and thus the population of a block is equal to the

number of cells that it contains. Suppose we want to find the optimal partition Pmax

in P** where blocks are allowed to be an arbitrary union of cells (not necessarily

connected). We use the logarithmic form of the objective function

– 8 –

g(x, y) = log[f(x, y)] (6)

= log[β(x− y + 1, y + 1)] (7)

= log[

∫ 1

0

px−y(1− p)ydp] (8)

to compute the value of a partition P . Thus the value of P , W (P) is
∑

g(a(B), n(B))

where the sum is taken over all the blocks B in P . The density of block B is defined

to be its population divided by its area, d(B) = n(B)/a(B). The following result is

what we call the intermediate density property.

The Intermediate Density Property: Let Pmax be a partition in P** that max-

imizes W . Let B be any block in Pmax and let C1, C2, C3 be cells in C with C1 and

C3 in B. If d(C1) < d(C2) < d(C3) then C2 is also in B.

Let C = C1, C2, . . . , CN be the starting partition of the data space X in <n into

cells, sorted by their densities so that

d(C1) ≤ d(C2) ≤ . . . ≤ d(CN). (9)

The intermediate density property implies that for some optimal partition Pmax, every

block B in Pmax is the union of consecutive cells from C. Thus to find an optimal

partition in P** we only need sort the cells by their densities and then assuming that

Ci is adjacent to Ci+1, for i = 1, 2, . . . , N−1, we apply the 1-d dynamic programming

algorithm to these cells in order to efficiently find an optimal partition into arbitrary

blocks. Since the same function g is used to assign values for a block no matter what

dimension the data comes from, then this algorithm can be applied to find the optimal

partition into arbitrary blocks regardless of the dimension of the data. If the blocks

of a partition are required to be connected then the branch and bound algorithm will

have to be used to find the optimal partition.

To prove the intermediate density property, we use several lemmas. First we prove

(Lemma 1) that the function g which assigns a value to each of the blocks in a partition

is strictly convex, using Holder’s inequality. Then we use several properties of a

strictly convex function to complete the proof of the intermediate density property.

Lemma 1: The function g(x, y) = log[f(x, y)] = log[β(x−y+1, y+1)] = log[
∫ 1

0
px−y(1−

p)ydp] is strictly convex on the region X = {(x, y)|x > 0, y > 0}.

Proof of Lemma 1: To show that g is strictly convex we need to show that for any

0 < λ < 1, and every pair of points (x1, y1), (x2, y2) in X, λg(x1, y1)+(1−λ)g(x2, y2) ≥

– 9 –

g(λx1 + (1− λ)x2, λy1 + (1− λ)y2), with strict inequality holding unless x1 = x2 and

y1 = y2. Note that

g(λx1 + (1− λ)x2, λy1 + (1− λ)y2) (10)

= log(f(λx1 + (1− λ)x2, λy1 + (1− λ)y2)) (11)

= log(

∫ 1

0

pλ(x1−y1)+(1−λ)(x2−y2)(1− p)λy1+(1−λ)y2dp) (12)

= log(

∫ 1

0

[pλ(x1−y1)(1− p)λy1][p(1−λ)(x2−y2)(1− p)(1−λ)y2]dp) (13)

= log(

∫ 1

0

[p(x1−y1)(1− p)y1]λ[p(x2−y2)(1− p)y2]1−λdp) (14)

≤ log([

∫ 1

0

px1−y1(1− p)y1dp]λ[

∫ 1

0

px2−y2(1− p)y2dp]1−λ) (15)

= λlog(f(x1, y1)) + (1− λ)log(f(x2, y2)) (16)

= λg(x1, y1) + (1− λ)g(x2, y2). (17)

The inequality in Lemma 1 follows from Holder’s Inequality.

Holder’s Inequality: For any nonnegative functions A(x), B(x) and real numbers

p, q such that for some 0 < λ < 1, p = 1/λ and q = 1/(1−λ) (equivalently 1/p+1/q =

1), we have the following inequality:

∫ 1

0

A(x)B(x)dx ≤ [

∫ 1

0

A(x)pdx]λ[

∫ 1

0

B(x)qdx]1−λ, (18)

with equality holding if and only if A(x)p/B(x)q is constant almost everywhere on

[0, 1].

To prove the inequality in Lemma 1 note that if A(x) = F (x)λ and B(x) =

G(x)1−λ, then

∫ 1

0

F (x)λG(x)1−λdx (19)

≤ [

∫ 1

0

[F (x)λ]pdx]λ · [
∫ 1

0

[G(x)1−λ]qdx]1−λ (20)

= [

∫ 1

0

F (x)dx]λ · [
∫ 1

0

G(x)dx]1−λ, (21)

with equality holding if and only if F (x)/G(x) is constant almost everywhere on [0, 1].

– 10 –

Lemma 2: For any positive reals m, n1, n2, the function h(x) = g(x, n1)+g(m−x, n2)

is strictly convex on I = (n1, m− n2 + 1).

Proof of Lemma 2: First we note that g(x, n1) and g(m− x, n2) are both strictly

convex by Lemma 1. It is easy to show that the sum of two strictly convex functions

is strictly convex.

Lemma 3: If h(x) is a strictly convex function on (a, b) ⊆ <, and δ1, δ2 are positive

real numbers such that {x − δ1, x + δ2} ⊆ (a, b), then either h(x − δ1) > h(x) or

h(x + δ2) > h(x).

Proof of Lemma 3: Assume h(x− δ1) ≤ h(x). Since h is strictly convex,

h(x) < [δ2/(δ1 + δ2)]h(x− δ1) + [(1− (δ2/(δ1 + δ2))]h(x + δ2). (22)

Multiplying both sides of this inequality by δ1 + δ2 we get

δ1h(x) + δ2h(x) < δ2h(x− δ1) + δ1h(x + δ2). (23)

Then since h(x− δ1) ≤ h(x), it must be that h(x + δ2) > h(x). By similar reasoning,

if h(x + δ2) ≤ h(x), then h(x− δ1) > h(x).

Proof of the Intermediate Density Property: Let Pmax be a partition of C that

maximizes W . Let blocks B1 and B2 be any pair of different blocks in P , and let

C1, C2, C3 be cells in C, with {C1, C3} ⊆ B1 and d(C1) < d(C2) < d(C3). Assume

for contradiction that C2 is in B2. If each cell contains a single data point then

a(C3) < a(C2) < a(C1). Thus δ1 = a(C2) − a(C3) > 0 and δ2 = a(C1) − a(C2) > 0.

We now consider two new partitions P1 and P2 created by swapping cell C2 for each

of C1, C3 in B1. Let

P1 = (P − {B1, B2}) ∪ {B′
1, B

′
2} (24)

and

P2 = (P − {B1, B2}) ∪ {B′′
1 , B′′

2} (25)

where

B′
1 = (B1 − {C3}) ∪ {C2}, (26)

B′
2 = (B2 − {C2}) ∪ {C3}, (27)

B′′
1 = (B1− {C1}) ∪ {C2}, (28)

B′′
2 = (B2 − {C2}) ∪ {C1}. (29)

– 11 –

Let P ′ be the partition Pmax − {B1, B2}. The value of partition Pmax in terms of

h(x) = g(x, n(B1)) + g(a(B1) + a(B2)− x, n(B2)) is

W (Pmax) =
∑

B∈Pmax

g(a(B), n(B)) (30)

= g(a(B1), n(B1)) + g(a(B2), n(B2)) +
∑
B∈P ′

g(a(B), n(B)) (31)

= h(a(B1)) + W (P ′). (32)

Similarly W (P1) = h(a(B1) − δ1) + W (P ′) and W (P2) = h(a(B1) + δ2) + W (P ′).

By Lemma 2, h(x) is convex and by Lemma 3, either h(a(B1) − δ1) > h(a(B1)) or

h(a(B1) + δ2) > h(a(B1)). Thus either W (P2) > W (Pmax) or W (P1) > W (Pmax)

contradicting the fact that Pmax maximizes W . Therefore C2 is not in B2 and since

B2 is an arbitrary block different from B1, it must be that C2 ∈ B1.

In (Scargle 1998) we also have the following global likelihood for data that is

prebinned into evenly spaced intervals (with constant rate per bin equal to Λ),

∫ ∞

0

ΛNe(−M+1)ΛdΛ = Γ(N + 1)/(M + 1)N+1 (33)

for a block of N data points in M bins. For prebinned data, the data cells in the

starting partition are taken to be the bins which can start with any number of data

points. As before the likelihood of a partition is assumed to be the product of the

likelihoods of its blocks and taking the logarithm we get a function that satisfies the

additive property.

Also in (Scargle 1998) we have a similar likelihood function for time to spill

(TTS) data on an interval. Assuming only every Sth photon is recorded and that

τ1, τ2, . . . , τn−1 are the lengths of the data cells (intervals between spill events) then

the likelihood that the intensity is constant over a block is

[(
N−1∏
n=1

τn)S−1/Γ(S)N−1] · [Γ(S(N − 1) + 1)/(M + 1)S(N−1)+1] (34)

where M =
∑N−1

n=1 τn is the length of this block and S(N − 1) is equal to the number

of data points in this block. The likelihood for a partition of data cells into blocks is

thus a constant (depends only on S and N and not on the partition), multiplied by

a function that is equal to the likelihood function for the binned data.

Note that the proof of the intermediate density property given here requires that

the number of data points in each cell is 1. It seems that a similar proof (though

– 12 –

slightly more complicated) shows that the intermediate density property is still true

for an arbitrary starting partition (cells can have any number of data points). A proof

quite similar to that in Lemma 1 shows that the likelihood function for binned data

is strongly convex as well and since the likelihood function for binned data is strongly

convex we see that the likelihood function for TTS data is also strongly convex. We

deduce that the intermediate density property holds for both binned data and TTS

data. Thus the algorithms described in this paper can be used to find the optimal

partitions for data in equal-spaced bins and for TTS data as well.

Another extension of the intermediate density property shows that if two cells

of the starting partition are equal in density, then they are in the same block of

the optimal partition. Unfortunately we haven’t yet been able to use either of these

extensions of the intermediate density property to speed up any of the algorithms

described in this paper. The complexity of the branch and bound algorithm we de-

scribed earlier, for finding the optimal partition of a set of data points into connected

blocks, is exponential. We suspect that this problem is NP-complete in dimension 2

and higher, but we have not yet been able to prove it.

– 13 –

REFERENCES

Alpert, C. J. and Kahng, A. B., Splitting Orderings into Multi-way Partitionings to

Minimize the Maximum Diameter, Journal of Classification, (14), 1997, pp.

51-74.

Barry, D. and Hartigan, J.A., Product partition models for change point problems,

J. Amer. Statist. Assoc., 20, 1992, 260-279.

Bellman, R., Dynamic Programming, Princeton University Press, Princeton, 1957.

Garey, M. and Johnson, D., Computers and Intractability W.H. Freeman and Com-

pany, New York, 1979.

Hubert, P., Change points in meteorological time series, Applications of Time Series

Analysis in Astronomy and Meteorology, Rao, T., Priestly, M., and Lessi, O.,

eds., 1997, Chapman and Hall.

Jackson, B., Scargle J., et. al., Optimal Partitions of Data on an Interval, accepted

for publication in IEEE Signal Processing Letters.

Kay, S. M., Fundamentals of Statistical Signal Processing: Detection Theory, Engle-

wood Cliffs. NJ: Prentice-Hall, 1998.

Kehagias, A., Nicolau, A., Fragkou, P., Petridis, V., Text Segmentation by Product

Partition models and Dynamic programming, Mathematical and Computer

modeling, 39, 2004, 209-217.

Lee, Peter M., Bayesian Statistics: An Introduction, 2nd edition, Arnold, London,

1997.

Quintana, F., and Iglesias, P., Bayesian Clustering and Product Partition Models,

Journal of the Royal Statistical Society, Series B, 65, 557-574, 2003.

Scargle, J., Studies in Astronomical Time Series Analysis. V. Bayesian Blocks, A New

Method to Analyze Structure in Photon Counting Data, The Astrophysical

Journal, (504), 1998, pp. 405-418.

Vidal, R., Optimal Partition of an Interval, Applied Simulated Annealing, Springer-

Verlag, New York, 1993, 277-291.

This preprint was prepared with the AAS LATEX macros v5.0.

